Если вы учитесь на физфаке НГУ, то вам приходится посещать лабораторные практикумы, причём каждый семестр разные. Со второго курса по итогам практикума полагается провести собственное исследование и написать курсовую работу. Расскажу-ка я про свою любимую курсовую.

Тема её звучала как «Исследование распространения поверхностной электромагнитной волны по геодезической призме». Что же всё это значит?
Что такое электромагнитная волна, видит каждый (причём в буквальном смысле). Обычно мы имеем дело с электромагнитными волнами, свободно распространяющимися в пространстве (например, светом или радиоволнами). Однако есть волны, локализованные у поверхности проводящего вещества. Их называют поверхностными плазмон-поляритонами (ППП). Их мы и изучали в этой работе.
Для создания ППП использовалось терагерцовое излучение Новосибирского лазера на свободных электронах. Если расположить все виды электромагнитного излучения в порядке возрастания их частоты, то сначала будут радиоволны, потом инфракрасное излучение, затем видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-лучи. Терагерцовое излучение лежит между радиоволнами и инфракрасным излучением. Оно применяется в сканерах систем безопасности и медицинских сканерах, а также для изучения биологических молекул. В большинстве лазеров источником излучения является кристалл. В Новосибирском лазере на свободных электронах, как нетрудно догадаться, излучение генерирует пучок электронов, движущихся с околосветовыми скоростями. Его пропускают через систему магнитов, заставляющей его двигаться по синусоиде, тем самым испытывать ускорение и излучать (все заряженные частицы, движущиеся с ускорением, излучают фотоны). Лазер принадлежит Институту ядерной физики, но находится на территории Института химической кинетики и горения и занимает целое здание; его, как указку, в карман не положишь. Замечательная особенность лазера на свободных электронах заключается в том, что частоту излучения можно перестраивать в широких пределах (а ваша лазерная указка так не умеет ).
Осталось разобраться с тем, что такое геодезическая призма. На скорость вычислений техники влияет скорость распространения электрического тока. Поэтому, когда в будущем нам понадобятся более мощные компьютеры, имеет смысл заменить электроны на что-нибудь побыстрее, например, фотоны. Пучком фотонов надо как-то управлять. Когда дело касается света, для поворота луча мы используем призмы, для фокусировки — линзы. В будущих оптических компьютерах, как один из вариантов, предлагается использовать ППП (уж они-то не будут разлетаться по всему устройству!). Линзой для них будет полусферическое углубление в проводящей поверхности, а призмой — коническая канавка. Такие оптические элементы называют геодезическими, потому что они меняют форму поверхности.

Кажется, со всем непонятным разобрались, теперь можно посмотреть на экспериментальную установку.



1. Излучение лазера доставляется на рабочую станцию по волноводу, заполненному сухим азотом. Выходное отверстие закрыто полиэтиленовой плёнкой, а когда излучение не нужно, то ещё и металлической заслонкой (на фото). С терагерцовым излучением надо быть осторожным: оно запросто может прожечь дырки в одежде экспериментатора. Для глаз оно тоже не очень полезно, поэтому работать следует в защитных очках.

2. Поляризаторы нужны, чтобы уменьшать мощность излучения.

3. Обтюратор представляет собой вращающийся диск с отверстиями; он периодически перекрывает поток излучения.

4. Диафрагма вырезает узкий пучок излучения.

5. Зеркало сделано из стекла с золотым покрытием. Нужно, чтобы поворачивать пучок.

6. А вот и наша главная героиня — геодезическая призма! Устроена она так же, как и зеркало. Вот фото, на котором её можно получше разглядеть.



7. Пойдя по поверхности призмы, ППП срывается с неё. Чтобы его зарегистрировать, мы использовали оптикоакустическую ячейку Голея. Она состоит из небольшого металлического цилиндра, закрытого затемнённой металлической пластиной с одной стороны и гибкой металлизированной диафрагмы с другой. Цилиндр заполнен ксеноном и запаян. Когда излучение падает на затемнённую металлическую пластину, газ нагревается, и его давление увеличивается. Это приводит к деформации диафрагмы, разделяющей две камеры. Свет от лампы, падающий на диафрагму, отражается от нее на фотодетектор. Движение диафрагмы изменяет величину отражённого потока.

Результаты я вам не покажу: во-первых, это не интересно, во-вторых, они не получились. Но мне всё равно понравилось делать эту работу.